基于支持向量机和遗传算法的人脸识别研究

来源 :微型机与应用 | 被引量 : 4次 | 上传用户:elongyu888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用自适应遗传算法(AGA)优化筛选改进高斯核函数支持向量机(SVM)参数模型进行人脸特征分类。支持向量机的泛化性能主要取决于核函数类型和核函数参数及惩罚系数C,本文在传统高斯核函数基础上提出改进高斯核函数作为支持向量机的非线性映射函数,并使用自适应遗传算法优化筛选核函数参数和支持向量机惩罚系数,将优化后的SVM模型用于人脸库进行实验仿真。实验结果表明,本文方法比传统高斯核函数支持向量机分类器模型有更高识别率。
其他文献
运动估计是图像超分辨率复原重要的步骤,直接影响最终的复原结果。针对运动估计中特征点匹配的问题,提出运用改进加速鲁棒特征(SURF)算法对图像的特征点进行匹配。再使用凸集投影(POCS)算法重建图像序列,最终得到复原的高分辨率图像。所提出的基于改进SURF算法的POCS算法对比其他图像复原算法,得到了峰值信噪比值较高、均方误差较低的复原图像,说明该算法的有效性。
针对目前在生产测试平台中广泛使用的高密度VXI PXI Digital I/O板卡容易损坏且故障定位困难、不便维修和维护的情况,开展了对其进行故障定位的诊断算法研究。研究了包括各种