论文部分内容阅读
本文就无约束优化问题提出了一个带记忆模型的非单调信赖域算法。与传统的非单调信赖域算法不同,文中的信赖域子问题的逼近模型为记忆模型,该模型使我们可以从更全面的角度来求得信赖域试探步,从而避免了传统非单调信赖域方法中试探步的求取完全依赖于当前点的信息而过于局部化的困难。文中提出了一个带记忆模型的非单调信赖域算法,并证明了其全局收敛性。