论文部分内容阅读
为进一步提高基于图卷积神经网络的半监督图节点分类的准确率,本文研究了基础图结构对图卷积神经网络的影响.通过对数据集(Cora、Citeseer及Pubmed)的图结构进行可视化,发现数据集(Cora、Citeseer)的图结构均为非连通图.通过研究非连通图中图拉普拉斯矩阵的"0"特征值和特征向量的特性,提出了通过对图拉普拉斯矩阵的"0"特征值对应的特征向量进行相关运算处理,获取非连通图最大连通分量的方法.该方法有效获取了数据集(Cora、Citeseer)图结构的最大连通分量,去除了非连通小分量.在