论文部分内容阅读
目前实际工业生产中的钢带缺陷检测任务存在数据难以收集、缺陷识别效果较差等问题,为此提出一种基于Faster-RCNN的钢带缺陷检测模型FRDNet。通过k-means聚类获得锚框参数,使生成框更符合目标缺陷类别比例,提高缺陷检测精度;同时利用模型迁移的方式微调网络结构,使钢带缺陷检测模型更快地适应目标缺陷任务。该方法有效解决了目标钢带表面缺陷数据较少的问题,增强了模型的泛化性。试验结果表明,该方法在GC10-DET钢带缺陷数据集上平均精确率均值mAP达67.6%,相较于原始模型提升了4.9%,检测速