论文部分内容阅读
应用小波包分析法和学习矢量量化网络对异步电动机的故障进行诊断。采用小波包分析法对采集的异步电机振动信号进行小波包分解,选取特殊频段的能量特征值作为LVQ神经网络的输入样本,通过训练,使构造的学习矢量量化网络能够反应能量特征值和故障类型的映射关系,从而达到故障诊断的目的。仿真结果表明,与常规方法相比,小波包分析法与LVQ网络结合构成的故障诊断分类器能更准确、更有效地实现异步电动机故障诊断。