【摘 要】
:
通过单元教学设计撬动课堂教学改革,进而发展学生学科核心素养,是深化课程改革的关键任务,也是打通此轮课程改革的最后一公里问题.与传统以课时为单位的教学设计不同,单元教学设计需要对单元内容进行整体设计和科学安排.完整的单元教学设计需要具备七个方面的要素,遵循四个方面的基本要求.为引导高中数学教师做好单元教学设计,构建了单元教学设计评价指标体系.同时,基于核心素养的单元教学还需要推进学校教研工作的转型,以适应深化课堂教学改革的新要求.
【机 构】
:
安徽省教育科学研究院 230061
论文部分内容阅读
通过单元教学设计撬动课堂教学改革,进而发展学生学科核心素养,是深化课程改革的关键任务,也是打通此轮课程改革的最后一公里问题.与传统以课时为单位的教学设计不同,单元教学设计需要对单元内容进行整体设计和科学安排.完整的单元教学设计需要具备七个方面的要素,遵循四个方面的基本要求.为引导高中数学教师做好单元教学设计,构建了单元教学设计评价指标体系.同时,基于核心素养的单元教学还需要推进学校教研工作的转型,以适应深化课堂教学改革的新要求.
其他文献
0和0是高中数学中的两个特殊的量,它们无论在概念与定理的建构,还是在解题教学及命题工作中都具有独特的作用.文章通过具体案例分析,提醒教师在教学工作中不可忽视0和0的特殊性.
2021年全国数学新高考Ⅰ卷导数压轴题以“极值点偏移”为命题背景,并非导数的主要应用,给不熟悉该背景的广大师生设置了不小的障碍.文章主要从极值点偏移、“形”的启发、解法的多样性等多个视角来阐述该题的命制思路与考查方向,试图提供一个新的突破口.
文章对2021年浙江省数学竞赛试题第9题的题干进行了修正,展示了不同的解题方法,并通过变式探究进一步揭示了问题的本质.
2021年的浙江省数学高考卷难度较大,少些套路、多些思维和计算是本次高考卷传达给我们的教学主方向.总体来说,2021年的试题较好地考查了学生的思维能力.文章以选择压轴题为例,进一步分享2021年高考带来的启示.
立体几何中的距离皆可归结为两点间的距离,即向量的模.针对距离问题,明确垂直反映了距离的本质,垂直意味着线段长度最短.通过综合几何法和向量方法的比较,体验共性与差异.毋庸置疑,法向量是反映垂直方向的最为直观的表达形式,其方向和其上投影向量长度既体现了几何图形直观,也提供了代数定量刻画,进而提炼出用向量研究距离问题的通性通法.
1研究背景与意义rn美国教育学家布鲁纳在《教育过程》一书中指出:“不论我们选教什么学科,务必使学生理解该学科的基本结构.所谓学科基本结构,是指学科基本概念、基本原理及其相互之间的关联性,而非孤立的事实本身和零碎的知识结论.这种基本结构是学生必须掌握的科学因素,应该成为教学过程的核心[1].”对于数学复习课而言,教师不仅要帮助学生巩固双基,理解数学思想方法,提升应用知识解决问题的能力,更要面对整个单元的知识和结构,用学科基本的知识、观念来不断扩大和加深学生的知识结构,学生头脑里积累的知识只有做到条件化、成熟
解题教学是高中数学教学常见形式,它对提升学生核心素养有着不可或缺的作用.文章结合教学实例阐述在解题教学中如何落实核心素养并针对当前解题教学实际提出三点教学建议.
“用尺规作一条线段等于已知线段”是初中数学五个基本作图之一.教学设计只有充分体现图形研究的整体性和知识发生发展的合理性,才能有利于发展学生的思维能力,使学生进行深度学习,打造“数”与“形”相结合的课堂,渗透数学美的教育.
在讲授北师大版本数学,选择性必修第一册第一章点到直线的距离公式是,课前要求学生预习后,一学生提出公式的推到为什么不从定义出发?引起笔者的思考,在讲授该内容时分别采取两种方法进行教学,产生不同的教学效果,现将其思考总结如下,与同行交流.为方便说明将教材推导与分析摘抄如下:rn在平面直角坐标系中,有一点P(x0,y0),直线l:Ax+By+C=0(其中A、B不全为0),如何求出点P到直线l的距离d呢?
解析几何的综合问题,常涉及多个知识点,对学生的能力要求比较高,不少学生会感到思路不明.通过一道解析几何模拟题的多视角解法探究案例启示,若变换解题视角,运用极坐标、参数方程能够使解题思路“柳暗花明”并大大减少了计算,最后展示极坐标、参数方程在近两年高考题中的具体应用,以期有抛砖引玉之效.