【摘 要】
:
托辊密封不可靠会引发轴承润滑失效,进而导致托辊旋转阻力急剧增加直至完全卡阻,已成为煤矿井下带式输送机的主要故障原因之一,提高托辊密封与润滑性能对于提升带式输送机工作效率具有重要现实意义.基于纳米磁性液体密封与润滑理论设计了新型托辊样机,利用可模拟井下环境的托辊旋转阻力试验台在不同试验条件下与普通托辊进行了性能对比试验.结果表明,常规环境定载荷试验中,磁性液体密封润滑托辊的旋转阻力较普通托辊最大降低45%,平均降低17%;常规环境定带速试验中,磁性液体密封润滑托辊的旋转阻力较普通托辊最大降低73%,平均降低
【机 构】
:
中国矿业大学机电工程学院 徐州 221116;中国矿业大学机电工程学院 徐州 221116;中国科学院兰州化学物理研究所固体润滑国家重点实验室 兰州 730000
论文部分内容阅读
托辊密封不可靠会引发轴承润滑失效,进而导致托辊旋转阻力急剧增加直至完全卡阻,已成为煤矿井下带式输送机的主要故障原因之一,提高托辊密封与润滑性能对于提升带式输送机工作效率具有重要现实意义.基于纳米磁性液体密封与润滑理论设计了新型托辊样机,利用可模拟井下环境的托辊旋转阻力试验台在不同试验条件下与普通托辊进行了性能对比试验.结果表明,常规环境定载荷试验中,磁性液体密封润滑托辊的旋转阻力较普通托辊最大降低45%,平均降低17%;常规环境定带速试验中,磁性液体密封润滑托辊的旋转阻力较普通托辊最大降低73%,平均降低54%;模拟井下煤尘环境试验中,磁性液体密封润滑托辊的旋转阻力较普通托辊平均降低26%;煤泥水淋水24 h试验后,普通托辊的旋转阻力增大至原来的7倍,而磁性液体密封润滑托辊的旋转阻力基本无变化.采用磁性液体密封润滑的托辊在不同试验条件下具有低旋转阻力、高抗水淋性等优异性能,可为井下带式输送机向低能耗、高可靠、长寿命方向发展提供有力技术支撑.
其他文献
智能刀具根据加工中具体用途的不同,可实现对切削状态在线监测、数据处理、切削过程优化控制等功能,通过智能刀具的使用可改善加工过程,提高加工质量与效率,到目前为止学者们对于智能刀具的研究已取得大量研究成果.对智能刀具切削状态监测和切削过程控制两个方面的研究进展进行论述,梳理了学者们应用智能刀具对切削力、切削温度、刀具振动进行监测与控制的研究成果,对刀具结构、监测方式、控制原理、缺点不足、发展方向进行了总结与讨论.对智能刀具涉及的关键技术进行探讨,由于智能刀具涉及多学科交叉,实现的功能及采用的原理各不相同,关键
近些年来,化学气相沉积(Chemical vapor deposition,CVD)单晶金刚石在电子学领域的应用令人瞩目,这得益于CVD单晶金刚石在生长技术和半导体掺杂技术上的进展.一直以来,成熟的衬底加工技术是半导体材料得以应用的基础,其中超精密抛光作为晶圆衬底加工的最后一道工序,直接决定了晶圆表面粗糙度和亚表面损伤程度.可以预见,超精密抛光技术将会在制备大尺寸高质量金刚石衬底中发挥重要作用.对目前国内外现有的单晶金刚石抛光方法进行综述,以制备大尺寸高质量单晶金刚石衬底为目标,从加工设备、工艺参数、加工
柔性电子器件相对于传统电子器件,拥有独特的柔性和延展性,能够在一定程度上适应不同的工作环境,满足设备的形变需求.石墨烯是开发柔性电子器件的理想材料.然而,传统的石墨烯加工技术大多涉及高温和化学溶剂,存在着成本高,工艺线路复杂和环境污染等问题,并不适合未来产业发展.激光直写(Laser direct writing,LDW)技术具有加工速度快,扫描面积大和空间分辨率高等优点,且无需掩模和后处理,在现代工业中广泛应用.最新研究表明,激光直写技术可以从氧化石墨烯、多种聚合物甚至天然材料中衍生出石墨烯,这无疑进一
聚合物基表面微结构在软体机器人、柔性电子器件、仿生机械、生物医学、组织工程等领域有着广泛的应用,将逐面式制造技术应用于聚合物基表面微结构的制造过程可解决传统微压印、光刻、逐点和逐线式制造方法加工周期长、效率低、大面积表面微结构制造脱模难等问题.发展聚合物基表面微结构的逐面式制造技术是当前先进制造技术的研究热点之一,具有广阔的应用前景.首先在阐述了常见的聚合物基表面微结构设计及其制造材料的基础上,重点论述了光刻、纳米压印、数字光投影式3D打印、能场辅助制造、自组装制造等五类逐面式成形制造技术方面的最新研究进
为确保高速列车在强风雨环境下安全运行,结合EULER-LAGRANGE方法和计算多体动力学方法,系统地研究风雨环境下高速列车的气动特性及运行安全特性.基于非球形雨滴,建立高速列车空气动力学计算模型,并验证计算模型的准确性,进而计算强风雨环境下作用于高速列车的气动载荷.建立高速列车车辆系统动力学模型,计算强风雨载荷作用下的高速列车运行安全特性.研究结果表明,在不同风速下,高速列车的侧力、升力、侧滚力矩及摇头力矩均随降雨强度的增加而增大,且与降雨强度近似成线性关系,对于点头力矩,当风速较小时,点头力矩随降雨强
当微纳结构尺度与可见光波长尺度接近时,在白光照射下将产生特定的结构色,颜色鲜艳亮丽.结构色的色彩特性由微纳结构形状特征和周期尺度决定,其颜色鲜艳程度和亮度由微纳结构形状精度和表面质量决定.提出了一种微纳结构轴向进给飞切加工方法,通过在磷化镍(Ni-P)材料表面高效率高精度加工出微纳米尺度的“梭形沟槽”,其单元特征尺寸为200~1000nm、表面粗糙度为7~10nm,实现了结构色微纳结构单元和色彩特征调控;并通过加工轨迹规划和工艺参数调控,实现了结构色像素单元与单元之间的无缝拼接,最终形成大面积结构色图案的
准确的自车和前车状态估计是智能汽车有效决策和控制的前提,而以往的研究通常不考虑噪声统计特性不确定的问题,导致某些情况下车辆状态估计的误差很大.为此,提出一种鲁棒自适应平方根容积卡尔曼滤波(Robust adaptive square-root cubature Kalman filter,RASCKF)算法,以降低噪声统计不确定性对估计精度的影响.首先,采用最大后验概率准则估计了过程噪声协方差和测量噪声协方差的统计值,以提高噪声稳定时状态估计的精确性.然后,基于标准化测量新息序列设计了故障检测规则,利用实
碳纤维增强热塑性复合材料(Carbon fiber reinforced thermoplastic composite,CFRTP)由于其优越的力学性能、较低的加工成本及可回收性,逐渐成为继铝合金、高强钢之后的新一代轻量化材料.国内外科研机构和材料企业都投入巨资和人力竞相开展相关研究,部分高校、企业已开始探索将CFRTP应用于机身与车身的制造与装配.超声波焊接是最适合焊接热塑性材料的方法之一,也是实现大规模装配CFRTP零部件的关键使能技术之一.从CFRTP超声波焊接基本过程、接头形式、数值模拟、质量监
电控机械式自动变速器(Automated manual transmission,AMT)换档品质难以控制,其主要原因是干式离合器没有油膜缓冲,且存在摩擦因数变化、膜片弹簧衰退等不确定因素.为了提高换档过程的驾驶品质,提出对离合器滑磨与驱动力矩恢复进行并行控制的动力换档模式,并为此过程设计“抗扰最优控制+模型误差观测”的换档控制策略.通过扰动观测器得到离合器与车辆动力传动系统的建模误差及外界扰动,进而将其视为系统扰动,设计可处理快变扰动的最优换档控制器,实现任意工况下滑磨功和冲击度的综合优化.联合仿真与实
砂卵石地层是一种典型的力学不稳定地层及强磨蚀性地层,盾构在该类地层中掘进通常会面临刀盘、刀具磨损严重,盾构推力与刀盘扭矩偏高且波动幅度大、地层变形不易控制等问题.砂卵石地层盾构掘进效率的高低及地层控制的好坏,刀盘选型及刀具配置是关键.以北京地铁新机场线“磁各庄站~1#风井”盾构区间为工程依托,利用PFC3D数值模拟及现场测试相结合的手段,研究刀盘开口率、刀具组合高差、先行刀刀间距等参数对盾构掘进效率及地层变形的影响.研究结果表明:相同掘进参数下大开口率辐条式刀盘比小开口率辐板式刀盘具有更好的掘进速度,小开