论文部分内容阅读
在多数据源的情况下,隐私保护机器学习是一个具有重要现实意义的研究课题,直接影响着人工智能在现实社会中的发展和推广。目前,已有许多致力于解决机器学习算法中隐私问题的方案,文章阐述并分析了四种常见的隐私保护技术,它们包括同态加密、秘密共享、乱码电路和差分隐私。介绍了近年来一种流行的联合学习解决方案框架—联邦学习,并对其存在的不足进行了讨论。基于对现有技术和方案的分析,文章提出了一种适用于多数据源场景的隐私保护方案,方案具有良好的安全性、健壮性和可校验性三个特点。