论文部分内容阅读
The genomic DNA sequence encoding soybean 24 kDa oleosin and its promoter were cloned andanalyzed for investigation of the potentials of the oleosin acted as a carrier forproduction of recombinant proteins in plant. The -300 box, GA-rich, G-box, SEF-3, SEF-4, RY box, ABA box, CAn and TATA box were found in the upstream region of the soybeanoleosin gene, which shows the functional oleosin promoter available. Homology comparisonreveals that the soybean 24 kDa oleosin shares the highest identity with the soybeanoleosin isoform A (U09118, GenBank), reaching to 98.4% in nucleotide. A soybean oleosin-hirudin fusion gene driven by the oleosin promoter was constructed and inserted intoplant binary expression vector. The intact tobacco plantlets were transformed by meansof vacuum infiltration approach, with the Agrobacterium tumefaciens harboring the abovevector. The transient correct expression of oleosin-hirudin fusion gene was identifiedby SDS/PAGE, western blotting and enterokinase treatment.
The genomic DNA sequence encoding soybean 24 kDa oleosin and its promoter were cloned and analyzed for the investigation of the potentials of the oleosin acted as a carrier for production of recombinant proteins in plant. The -300 box, GA-rich, G-box, SEF-3 , SEF-4, RY box, ABA box, CAn and TATA box were found in the upstream region of the soybeanoleosin gene, which shows the functional oleosin promoter available. Homology comparisonreveals that the soybean 24 kDa oleosin shares the highest identity with the soybeanoleosin isoform A (U09118, GenBank), reaching to 98.4% in nucleotide. A soybean oleosin-hirudin fusion gene driven by the oleosin promoter was constructed and inserted intoplant binary expression vector. The intact tobacco plantlets were transformed by means of a vacuum infiltration approach, with the Agrobacterium tumefaciens harboring the above vector. The transient correct expression of oleosin-hirudin fusion gene was identified by SDS / PAGE, western blotting and enterokinase treatmen t.