论文部分内容阅读
可能性C-均值(PCM)聚类作为经典的基于原型的聚类方法,在处理高维数据集时性能骤降,无法检测出高维空间中嵌入的有效子空间。针对此不足,在PCM基础上引入子空间聚类机制,提出子空间可能性聚类算法SPC。该方法保留了PCM方法的优点,且对高维数据具有较好的适应性,能够有效检测各类所处的子空间。仿真实验验证了SPC算法的有效性。