浅谈双曲线的定义及应用

来源 :数学通讯 | 被引量 : 0次 | 上传用户:tt1234554321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
课本指出 :平面内与两个定点F1,F2 的距离的差的绝对值等于常数 (小于 |F1F2 |)的点的轨迹叫双曲线 ,这两个定点叫双曲线的焦点 .对此定义的理解时应注意以下三点 :1)注意点到两定点的距离差的绝对值是常数 ,且常数小于 |F1F2 |.没有绝对值 ,其轨迹只能是双曲线的一支 .2 )注意 The textbook points out that the trajectory of the point where the absolute value of the difference between the distances in the plane and the two fixed points F1, F2 is equal to a constant (less than |F1F2|) is called a hyperbola. These two fixed points are called hyperbolic focal points. Understanding of this definition The following three points should be noted: 1) Note that the absolute value of the distance difference between the two fixed points is constant, and the constant is less than |F1F2 |. There is no absolute value, and its trajectory can only be a hyperbolic one.
其他文献