论文部分内容阅读
在利用主动学习方法进行高光谱图像分类时,往往存在空-谱特征不能得到有效利用和样本需要进行手动标注的问题。针对这些问题,提出一种结合卷积神经网络的主动学习方法进行高光谱图像分类。该方法首先提取像素的空间邻域组成训练样本,通过卷积神经网络对样本的空间特征和光谱特征进行学习并对数据进行初步分类;然后,基于高光谱图像的空间相似性和光谱相似性,对无标注样本进行标注,并将其加入标注训练集以提高分类器的分类精度。在Salinas、PaviaU和Indian Pines这3个高光谱数据上的实验结果表明,该方法能在较