论文部分内容阅读
采用Elman神经网络(反馈神经网络,Recurrent Network)结合近红外光谱技术建立鲜乳中的脂肪、蛋白质、乳糖定量分析模型.用偏最小二乘法(Partial Least SqHales.PUS)将原始数据压缩主成分,取前3个主成分的14个吸收峰值输入Elman网络,网络中间层神经元个数为53.Elman网络模型对样品中3个组分含量的预测决定系数(R2)分别为:0.985、0.951、0.967,表明所建Elman网络预测模型能够较准确预测鲜乳中脂肪、蛋白质和乳糖的含量,从而为近红外光谱的多组分定量分析提供了新思路.