论文部分内容阅读
文[1]变题2的点评如下:“形如a_n=c·a_(n-1)+d·b~n(c≠0,c≠1,d≠0,b≠0)的递推关系式均可由a_n+λb~n=c(a_(n-1)+λb~(n-1))构造等比数列处理.”文[2]指出该点评不妥之处:c=b时无法求出待定的λ,还应加上c≠b这一条件,并举例说明c=b时数列通项的求法.细读两文,深受启发,但感
The following is the comment of [1]: Variant 2 is as follows: “The recursion of the form a_n = c · a_ (n-1) + d · b ~ n (c ≠ 0, c ≠ 1, d ≠ 0, b ≠ 0) Relationships can be treated by a_n + λb ~ n = c (a_ (n-1) + λb ~ (n-1)) Constructive geometric sequence. ”Wen [2] pointed out that the evaluation error: c = b Can not find the undetermined λ, but also c ≠ b this condition, and c = b when an example of the generalization of the sequence of things.