论文部分内容阅读
神经网络具有自学习、修正误差的能力,遗传算法具有较强的全局随机搜索能力,两者结合可以优势互补.在编码、选择、交叉、变异等方面对基本遗传算法进行改进,提高其效率和性能,并利用改进的遗传算法对神经网络权阚值进行学习,同时确定最佳的网络结构,利用原型观测资料建立了大坝变形预测的遗传神经网络模型。模型具有良好的预测性能及泛化功能,为大坝安全监控提供了有力的技术支持。