论文部分内容阅读
传统的灰色预测模型所需的样本容量较少,仅4个数据就可以建立灰色预测模型。虽然传统的灰预测建模较为简单,但是忽略了对预测较为确利的新信息,容易产生预测模型老化的现象,预测精度不高。全信息新陈代谢的GM(1,1)灰色预测模型更为合理、科学,全信息建模避免了局部信息建模的局限性,每预测一个结果去除原始数列的最老数据的新陈代谢处理保证了预测数列的实效性,并用Matlab实现改进GM(1,1)模型的编程计算,应用于双流县电力需求量的预测,预测精度好。