论文部分内容阅读
近年来,基于线性判别分析(LDA)的图像模式识别方法研究越来越受到人们的关注。然而LDA方法自身存在的小样本难题,极大的影响了样本集特征矩阵的获取。研究者随后提出的2维线性分析(2D-LDA)在一定程度上解决了这个问题。在传统2D-LDA基础上,提出一种改进的2维线性分析方法——2D-PLDA,该方法通过对样本集进行预分类,使得散布矩阵更加合理;在此基础上将2D-PLDA和离散小波相结合,应用于虹膜识别中。实验结果证明,该算法在识别精度和计算复杂度等方面均较传统LDA和2D-LDA方法有很大的改进,