论文部分内容阅读
为从多光谱图像特征提取的角度进行优化波段选择,在充分描述数据结构特征的同时使提取选择的特征有明确的物理意义,对基于流形学习算法的优化波段选择算法进行了研究。用判别局部排列(DLA)算法对多光谱数据进行预处理,选取正负样本,利用样本信息,以目标分类为目的进行特征提取。利用特征提取的结果,从特征提取的角度分析当前各谱段对所提取的主特征贡献的总信息量和贡献率,给出了基于权值和基于贡献率的两种优化波段选择算法,分别基于权值和贡献率进行特征选择。用正负样本的可分性可快速高效降维,同时又能保留多光谱图像原物理特