论文部分内容阅读
为了提高脑力负荷分类准确率,提出一种将Bagging和极限学习机相结合的集成算法。用极限学习机(ELM)作为底层弱分类器,通过多数投票方式决定最终类别的标签,从而构建最终强分类器。实验结果表明,在脑力负荷识别研究问题上,该集成算法的分类准确率在4个被试数据集上分别达到了96.17%、96.02%、92.50%和93.50%。相较于传统的ELM算法,分类准确率在4个被试数据集上分别提升了1.59%、1.34%、2.86%和1.80%。并且新算法在精确率、灵敏度和特异度等评估标准上均高于传统ELM分类器。