论文部分内容阅读
In order to provide accurate launching pitching angular velocity(LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics(MFBD) technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model.The built model is verified with the frequency spectrum analysis. With the flexible body contact theory and nonlinear theory of MFBD technology, the research is conducted on the influence of a series of factors on LPAV, such as launching angle change, clearance between launching canister and missile,thrust change, thrust eccentricity and mass eccentricity, etc. Through this research, some useful values of the key design parameters which are difficult to be measured in physical tests are obtained. Finally,a simplified mathematical model of the changing law of LPAV is presented through fitting virtual test results using the linear regression method and verified by physical flight tests. The research results have important significance for the exterior trajectory optimization design.
In order to provide accurate launching pitching angular velocity (LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics (MFBD) technology is presented to studying the changing law of LPAV of the rotating missile based on spiral guide. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built-in flexible body models of key components and the special force model. built-in model is verified with the frequency spectrum analysis. With the flexible body contact theory and nonlinear theory of MFBD technology, the research is conducted on the influence of a series of factors on LPAV, such as launching angle change, clearance between launching canister and missile, thrust change, thrust eccentricity and mass eccentricity, etc. Through this research, some useful values of the key design parameters which are difficult to be measured in physical tests are obtained. Finally, a simplified mathematical model of the changing law of LPAV is presented through fitting virtual test results using the linear regression method and verified by physical flight tests. The research results have important significance for the exterior trajectory optimization design.