论文部分内容阅读
Effects of spherical quasi-crystal contained in Mg-Zn-Y-Mn master alloy on the microstructure and as-cast mechanical properties of ZA155 high zinc magnesium alloy have been investigated by means of optical microscopy, XRD, SEM, EDS, tensile test, impact test and hardness test. Experimental results show that the addition of spherical quasi-crystal contained in the Mg-Zn-Y-Mn master alloy into the ZA155 high zinc magnesium alloy resulted in grain refinement of the matrix, changing the morphologies of φ-Al2Mg5Zn2 phase and τ-Mg32(Al,Zn)49 phase from continuous net-like structures to discontinuous strip-like structure and blocky one, respectively.In the present research, the best comprehensive mechanical properties of reinforced ZA155 high zinc magnesium alloy has been obtained when 5.0wt% spherical quasi-crystal was introduced from the Mg-Zn-Y-Mn master alloy into the target alloy system. In such case, the room-temperature tensile strength reached 207 MPa, about 23% higher than that of the base alloy; the impact toughness peaked at 5.5 J/cm2, about 40% higher than that of the base alloy; and the elevated-temperature tensile strength reached 203 MPa, indicating improved heat resistance.