论文部分内容阅读
[摘要]对电厂主蒸汽管道外表面温度超标现象进行分析,提出改造技术方案及施工工艺要求,介绍复合硅酸盐保温材料在蒸汽管道节能改造中的成功应用。
[关键词]汽管道保温节能环保应用
中图分类号:TQ022.11+5 文献标识码:TQ 文章编号:1009―914X(2013)31―0218―01
一、改造前保温存在的问题电厂12MW 次高温次高压机组主蒸汽管道,原设计保温材料是硬质成型微孔硅酸钙,在运行中由于机组启、停时管道产生热位移,交变挤压;管道的轻微震动;长期高温使用等原因,造成硅酸钙碎裂粉化,形成很多裂缝,保温材料的热密封性能下降,蒸汽管道热能容易向外散发。同时保温材料塌陷出现空洞,特别是在水平管与垂直管段交接的弯头处出现脱节,保温效果很不理想,外表面温度平均55℃,局部温度高达150℃以上,散热损失较大。
按GB4272 - 92《设备及管道保温技术通则》,在设备或管道外表面采取保温措施后,其保温层外表面温度必须小于50℃的规定,外表面温度已经超标。因此,节能降耗工作成为需要解决的当务之急,同时管道的保温节能改造既是技术的需要,是企业管理的重要内容,也是节能降耗的重要途径,因此电厂于2005 年对1#、2# 机组主蒸汽管道进行了保温节能改造。
二、保温材料的选择
(一)保温材料性能对比成型微孔硅酸钙产品具有质地较硬、抗热震性、可塑性差,容易碎裂粉化、容重较高、材料规格种类多、材料管理工作量大等缺点。
复合硅酸盐纤维板和复合硅酸盐膏产品具有质地柔软、密度低、导热系数小、优良的热稳定性及抗热震性、优良的抗拉强度、无腐蚀无污染、施工简便可塑性强、使用寿命长,受热膨胀小,外包铁皮不会有拉裂、凹凸等优点,其保温效果特别好。
(二)产品综合经济效益
复合硅酸盐纤维板和复合硅酸盐膏保温材料在相同工艺条件下,其使用厚度为硬质成型微孔硅酸钙保温材料的五分之三,可使管道外保护层用量相应减少18%,散热损失相应减少20%。无论是一次性投资,还是每年的散热损失费用等方面,均以使用复合硅酸盐纤维板和复合硅酸盐膏保温材料为最经济,且具有良好的综合经济效益。
(三)保温材料的选择
通过以上对比,主蒸汽管道的保温材料采用复合硅酸盐纤维板和复合硅酸盐膏保温材料。
三、改造的施工技术方案及工艺要求(一)拆除从锅炉主蒸汽出口集箱至汽轮机高压缸范围内管道上的原保温结构,清除干净管道表面的灰尘和铁锈。
(二)使用复合硅酸盐膏保温材料直接在管道、阀门表面进行涂抹,形成厚度为20mm 的基础保温层。
(三)在主蒸汽管道基础保温层上用细铁丝捆扎3 层复合硅酸盐纤维板,每层厚度为25mm,将它错缝粘贴,并用复合硅酸盐膏保温材料涂抹保温层的缝隙,保证其保温的密封性能。在第1、2、3 层复合硅酸盐纤维板外用细铁丝网整体捆扎、勒紧,防止保温层滑动、错位。外使用复合硅酸盐膏保温材料进行厚度为20mm 的密封涂抹,形成厚度为95mm 的主保温层。
(四)在主蒸汽管道主保温层上,用细铁丝捆扎一层复合硅酸盐纤维板,厚度为25mm,将它错缝粘贴,并用复合硅酸盐膏保温材料涂抹保温层的缝隙,保证其保温的密封性能。在第4 层复合硅酸盐纤维板外用细铁丝网整体捆扎、勒紧,防止保温层滑动、错位。外使用复合硅酸盐膏保温材料进行厚度为10mm 的密封涂抹,形成厚度为35mm 的加强保温层。
(五)主蒸汽管道保温层构成为基础保温层(20mm)、主保温层(95mm)和加强保温层(35mm),总厚度为150mm。
(六)最外层金属保护层的材料用0.8mm 铝皮封包,相邻搭接不小于40mm,并在适当的位置留出自由膨胀余量。安装时,应紧贴保温层,环向接缝、纵向接缝和水平接缝必须上搭下,成顺水方向。弯头铝皮的外弧段另外增加一条宽度为50mm 的铝皮纵向连接,使弯头铝皮的环向、纵向都能连接成牢固的整体,不会产生脱节现象。
(七)施工后的保温层,不得覆盖设备的铭牌、仪表等。设备的名称、介质流向标识、色标及时按原样恢复。
四、改造后的效果及经济性分析
(一)改造前后监测点的外表面温度对比将弯头作为监测点,对其改造前、后弯头监测点处的外表面温度测温。实施了保温节能改造后,外表面温度完全符合GB4272 - 92 规定的标准,原超温点已经消除,平均温度下降22℃,保温效果得到了明显的提高。
(二)改造前后的散热损失对比
散热损失通常以热流密度q(W/m2)表示。散热损失与散热面积之乘积,就是该面积的散热量,所以散热面积内的散热损失表示了该区域的保温状况,该项指标是检验热力设备保温效果的主要指标1. 改造前散热损失:主蒸汽温度为550℃,平均外表面温度为T w 前= 55℃,按同一环境温度25℃计算:α 改造前为10.92W/(m2.k);q 改造前为327.6W/m2。
可看出,改造前的散热损失已经超过标准值。
2. 改造后散热损失:
平均外表面温度为T w 后= 33℃,按同一环境温度25℃计算:α 改造后为9.82W/(m2.k);q 改造后为78.56W/m2。
可以看出,改造后的散热损失比标准值降低。
(三)改造后的经济性分析
单位换热量的对比分析计算,其中主蒸汽管道保温后外表面换热面积A=900m2。
降低散热损失Δq = q 改造前-q改造后= 249.04W/m2,降低率q % =76%,减少热流量损失ΔΦ =A Δq =224136 W。
改造后1h 内减少散热量,即节能Q=ΔΦ×h = 806889.6kJ,以机组年运行6000h,锅炉热效率η = 90%计算,运行1 年即可节约标准煤量B b =QbQη×h= 183540kg,燃煤单价按1000 元/t 计算,每年节约资金:183.54×1000 = 183540 元,取得了显著的经济效益。
四、结束语
(一)通过对1#、2# 机组主蒸汽管道进行保温节能改造后,平均外表面温度由55℃下降至33℃,其能源利用率、环保性能都有较大的提高,减少了机组的散热损失及对环境的热污染。
(二)运行1 年即可节约标准煤量184t,节约燃煤资金约18 万元,同时减少烟气及硫化物的排放,取得了良好的经济效益和社会效益,复合硅酸盐保温材料值得在其他热力管道保温节能环保改造中推广使用。
参考文献
[1] 水利电力部电力规划设计院,火力发电厂热力设备和管道保温油漆设计技术规定,(SDGJ59-84)2008
[关键词]汽管道保温节能环保应用
中图分类号:TQ022.11+5 文献标识码:TQ 文章编号:1009―914X(2013)31―0218―01
一、改造前保温存在的问题电厂12MW 次高温次高压机组主蒸汽管道,原设计保温材料是硬质成型微孔硅酸钙,在运行中由于机组启、停时管道产生热位移,交变挤压;管道的轻微震动;长期高温使用等原因,造成硅酸钙碎裂粉化,形成很多裂缝,保温材料的热密封性能下降,蒸汽管道热能容易向外散发。同时保温材料塌陷出现空洞,特别是在水平管与垂直管段交接的弯头处出现脱节,保温效果很不理想,外表面温度平均55℃,局部温度高达150℃以上,散热损失较大。
按GB4272 - 92《设备及管道保温技术通则》,在设备或管道外表面采取保温措施后,其保温层外表面温度必须小于50℃的规定,外表面温度已经超标。因此,节能降耗工作成为需要解决的当务之急,同时管道的保温节能改造既是技术的需要,是企业管理的重要内容,也是节能降耗的重要途径,因此电厂于2005 年对1#、2# 机组主蒸汽管道进行了保温节能改造。
二、保温材料的选择
(一)保温材料性能对比成型微孔硅酸钙产品具有质地较硬、抗热震性、可塑性差,容易碎裂粉化、容重较高、材料规格种类多、材料管理工作量大等缺点。
复合硅酸盐纤维板和复合硅酸盐膏产品具有质地柔软、密度低、导热系数小、优良的热稳定性及抗热震性、优良的抗拉强度、无腐蚀无污染、施工简便可塑性强、使用寿命长,受热膨胀小,外包铁皮不会有拉裂、凹凸等优点,其保温效果特别好。
(二)产品综合经济效益
复合硅酸盐纤维板和复合硅酸盐膏保温材料在相同工艺条件下,其使用厚度为硬质成型微孔硅酸钙保温材料的五分之三,可使管道外保护层用量相应减少18%,散热损失相应减少20%。无论是一次性投资,还是每年的散热损失费用等方面,均以使用复合硅酸盐纤维板和复合硅酸盐膏保温材料为最经济,且具有良好的综合经济效益。
(三)保温材料的选择
通过以上对比,主蒸汽管道的保温材料采用复合硅酸盐纤维板和复合硅酸盐膏保温材料。
三、改造的施工技术方案及工艺要求(一)拆除从锅炉主蒸汽出口集箱至汽轮机高压缸范围内管道上的原保温结构,清除干净管道表面的灰尘和铁锈。
(二)使用复合硅酸盐膏保温材料直接在管道、阀门表面进行涂抹,形成厚度为20mm 的基础保温层。
(三)在主蒸汽管道基础保温层上用细铁丝捆扎3 层复合硅酸盐纤维板,每层厚度为25mm,将它错缝粘贴,并用复合硅酸盐膏保温材料涂抹保温层的缝隙,保证其保温的密封性能。在第1、2、3 层复合硅酸盐纤维板外用细铁丝网整体捆扎、勒紧,防止保温层滑动、错位。外使用复合硅酸盐膏保温材料进行厚度为20mm 的密封涂抹,形成厚度为95mm 的主保温层。
(四)在主蒸汽管道主保温层上,用细铁丝捆扎一层复合硅酸盐纤维板,厚度为25mm,将它错缝粘贴,并用复合硅酸盐膏保温材料涂抹保温层的缝隙,保证其保温的密封性能。在第4 层复合硅酸盐纤维板外用细铁丝网整体捆扎、勒紧,防止保温层滑动、错位。外使用复合硅酸盐膏保温材料进行厚度为10mm 的密封涂抹,形成厚度为35mm 的加强保温层。
(五)主蒸汽管道保温层构成为基础保温层(20mm)、主保温层(95mm)和加强保温层(35mm),总厚度为150mm。
(六)最外层金属保护层的材料用0.8mm 铝皮封包,相邻搭接不小于40mm,并在适当的位置留出自由膨胀余量。安装时,应紧贴保温层,环向接缝、纵向接缝和水平接缝必须上搭下,成顺水方向。弯头铝皮的外弧段另外增加一条宽度为50mm 的铝皮纵向连接,使弯头铝皮的环向、纵向都能连接成牢固的整体,不会产生脱节现象。
(七)施工后的保温层,不得覆盖设备的铭牌、仪表等。设备的名称、介质流向标识、色标及时按原样恢复。
四、改造后的效果及经济性分析
(一)改造前后监测点的外表面温度对比将弯头作为监测点,对其改造前、后弯头监测点处的外表面温度测温。实施了保温节能改造后,外表面温度完全符合GB4272 - 92 规定的标准,原超温点已经消除,平均温度下降22℃,保温效果得到了明显的提高。
(二)改造前后的散热损失对比
散热损失通常以热流密度q(W/m2)表示。散热损失与散热面积之乘积,就是该面积的散热量,所以散热面积内的散热损失表示了该区域的保温状况,该项指标是检验热力设备保温效果的主要指标1. 改造前散热损失:主蒸汽温度为550℃,平均外表面温度为T w 前= 55℃,按同一环境温度25℃计算:α 改造前为10.92W/(m2.k);q 改造前为327.6W/m2。
可看出,改造前的散热损失已经超过标准值。
2. 改造后散热损失:
平均外表面温度为T w 后= 33℃,按同一环境温度25℃计算:α 改造后为9.82W/(m2.k);q 改造后为78.56W/m2。
可以看出,改造后的散热损失比标准值降低。
(三)改造后的经济性分析
单位换热量的对比分析计算,其中主蒸汽管道保温后外表面换热面积A=900m2。
降低散热损失Δq = q 改造前-q改造后= 249.04W/m2,降低率q % =76%,减少热流量损失ΔΦ =A Δq =224136 W。
改造后1h 内减少散热量,即节能Q=ΔΦ×h = 806889.6kJ,以机组年运行6000h,锅炉热效率η = 90%计算,运行1 年即可节约标准煤量B b =QbQη×h= 183540kg,燃煤单价按1000 元/t 计算,每年节约资金:183.54×1000 = 183540 元,取得了显著的经济效益。
四、结束语
(一)通过对1#、2# 机组主蒸汽管道进行保温节能改造后,平均外表面温度由55℃下降至33℃,其能源利用率、环保性能都有较大的提高,减少了机组的散热损失及对环境的热污染。
(二)运行1 年即可节约标准煤量184t,节约燃煤资金约18 万元,同时减少烟气及硫化物的排放,取得了良好的经济效益和社会效益,复合硅酸盐保温材料值得在其他热力管道保温节能环保改造中推广使用。
参考文献
[1] 水利电力部电力规划设计院,火力发电厂热力设备和管道保温油漆设计技术规定,(SDGJ59-84)2008