融合背景块再选取过程的显著性检测

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:kk666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的显著性检测算法大多使用背景先验提高算法性能,但传统模型只是简单地将图像四周的边缘区域作为背景区域,导致结果在显著性物体触及到图像边界的情况下产生误检测。为更准确地应用背景先验,提出一种融合背景块再选取过程的显著性检测方法。方法利用背景先验、中心先验和颜色分布特征获得种子向量并构建扩散矩阵,经扩散方法得到初步显著图,并以此为输入再经扩散方法得到二层显著图。依据Fisher准则的思想以二层显著图为基础创建背景块再选取过程,将选取的背景块组成背景向量并构建扩散矩阵,经扩散方法得到背景显著图。将背景显著
其他文献
目的基于相关滤波和孪生神经网络的两类判别式目标跟踪方法研究已取得了较大进展,但后者计算量过大,完全依赖GPU(graphics processing unit)加速运算。传统相关滤波方法由于滤波模型采用固定更新间隔,难以兼顾快速变化目标和一般目标。针对这一问题,提出一种基于目标外观状态分析的动态模型更新算法,优化计算负载并提高跟踪精度,兼顾缓变目标的鲁棒跟踪和快速变化目标的精确跟踪。方法通过帧间信
目的传统显著性检测模型大多利用手工选择的中低层特征和先验信息进行物体检测,其准确率和召回率较低,随着深度卷积神经网络的兴起,显著性检测得以快速发展。然而,现有显著性方法仍存在共性缺点,难以在复杂图像中均匀地突显整个物体的明确边界和内部区域,主要原因是缺乏足够且丰富的特征用于检测。方法在VGG(visual geometry group)模型的基础上进行改进,去掉最后的全连接层,采用跳层连接的方式用
期刊
有人说潮流就像站台上的列车,无论什么款式或者品类,只要耐心在站台上等候,总会有下一班列车开来.而那些已经开走的,泛泛之辈以个人的力量总是难以追上.这是站在普通消费者的
期刊
期刊
建议一:发展数字经济促就业,不能一遇困难就想裁员rn受疫情影响,拥有6000多名员工的兴达公司生产经营遇到了一定困难,海外订单需求极为迫切.2月11日,兴达公司经上级审查验收
期刊