论文部分内容阅读
目的
探讨基于DWI和液体衰减反转恢复序列(FLAIR)的深度学习技术构建预测急性卒中发病时间模型的效果。
方法回顾性分析于2017年1月至2020年5月在南京市第一医院就诊且发病时间明确的急性卒中患者324例。采用7∶3比例按照完全随机法将患者分为训练集226例,测试集98例;再根据发病时间将患者分为≤4.5 h和>4.5 h两组。由医师对DWI图像上急性梗死区及FLAIR相应的高信号区进行轮廓勾勒标注。利用InceptionV3模型作为图像特征提取的基本模型,构建并验证基于单序列(DWI、FLAIR)和多序列(DWI+FLAIR)的深度学习预测模型。比较人工识别、单序列模型及多序列模型预测急性卒中发病时间的ROC曲线下面积(AUC)、准确度等性能。
结果发病时间≤4.5 h患者中94例(94/207)存在DWI-FLAIR不匹配,发病时间>4.5 h患者中28例(28/117)存在DWI-FLAIR不匹配。ROC分析显示人工识别DWI-FLAIR不匹配预测急性卒中发病时间的AUC为0.607,准确度为60.2%。基于单序列的深度学习预测模型显示FLAIR序列预测急性卒中发病时间的AUC为0.761,准确度为71.4%;DWI序列预测急性卒中发病时间的AUC为0.836,准确度为81.6%;基于多序列(DWI+FLAIR)深度学习模型预测急性卒中发病时间的AUC为0.852,明显优于人工识别(Z=0.617,P=0.002)、基于FLAIR序列深度学习模型(Z=2.133,P=0.006)和基于DWI序列深度学习模型(Z=1.846,P=0.012)。
结论基于DWI和FLAIR的深度学习模型预测急性卒中发病时间明显优于人工识别,可为未知发病时间的卒中患者提供静脉溶栓治疗指导。