论文部分内容阅读
【摘 要】 我们的教学实践表明:小学数学教育的现代化,主要不是内容的现代化,而是数学思想及教育手段的现代化,加强数学思想的教学是基础数学教育现代化的关键。
【关键词】 小学数学 数学思想与方法
1 小学数学教学中渗透数学思想方法的必要性
小学教学教材是数学教学的显性知识系统,数学思想方法是数学教学的隐性知识系统。许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。虽然数学知识本身是非常重要的,但是它并不是唯一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
2 小学数学教学中常用的思想方法
2.1 转化的思想方法。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法.?转化是解决数学问题常用的思想方法。在小学转化思想主要集中在解题中和各平面图形的面积公式的推导、立体图形体积公式的推导。
2.2 类比的思想方法。类比的思想方法在数学上根据两个或两类对象之间在某些方面的相似或相同,从而推出他们在其他方面也可能相似或相同的一种逻辑推理的方法称为类比法。如:《分数的基本性质》的教学可以建立在商不变性质的基础上,教学“除数是小数的除法”时,可以预设在复习“商不变性质”和“被除数是小数而除数是整数的小数除法”的基础上利用知识的迁移类比让学生自己探索出计算方法。
2.3 模型化思想方法。建立和研究客观事物的数学模型,从量的方法来揭示数学对象本质特征和变化规律的方法称为模型方法。模型方法可以帮助学生探索数学的作用产生对数学学习的兴趣。小学阶段最典型的渗透模型化思想的是:植树问题、烙饼问题、抽屉原理等。
2.4 对应的思想方法。对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2.5 假设的思想方法。假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
2.6 符号化思想方法。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。
2.7 分类的思想方法。分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
2.8 集合的思想方法。集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
2.9 数形结合思想方法。数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
2.10 推理的思想方法。推理是从一个或几个判断得到一个新的判断的思维形式。推理的种类很多,根据推理所表现出来的思维的方向性,可分为归纳推理、演绎推理、类比推理。归纳推理从个别事例中概况出一般原理的思维方法;演绎推理是从一般到特殊的推理方法;类比推理是根据两个(或两类)不同的对象之间在某些方面有相同或相似之处,猜测它们在其他方面也可能相同或相似,是由此及彼的过程。
2.11 归纳的思想方法。在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
2.12 统计的思想方法。在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法?
从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。
【关键词】 小学数学 数学思想与方法
1 小学数学教学中渗透数学思想方法的必要性
小学教学教材是数学教学的显性知识系统,数学思想方法是数学教学的隐性知识系统。许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。虽然数学知识本身是非常重要的,但是它并不是唯一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
2 小学数学教学中常用的思想方法
2.1 转化的思想方法。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法.?转化是解决数学问题常用的思想方法。在小学转化思想主要集中在解题中和各平面图形的面积公式的推导、立体图形体积公式的推导。
2.2 类比的思想方法。类比的思想方法在数学上根据两个或两类对象之间在某些方面的相似或相同,从而推出他们在其他方面也可能相似或相同的一种逻辑推理的方法称为类比法。如:《分数的基本性质》的教学可以建立在商不变性质的基础上,教学“除数是小数的除法”时,可以预设在复习“商不变性质”和“被除数是小数而除数是整数的小数除法”的基础上利用知识的迁移类比让学生自己探索出计算方法。
2.3 模型化思想方法。建立和研究客观事物的数学模型,从量的方法来揭示数学对象本质特征和变化规律的方法称为模型方法。模型方法可以帮助学生探索数学的作用产生对数学学习的兴趣。小学阶段最典型的渗透模型化思想的是:植树问题、烙饼问题、抽屉原理等。
2.4 对应的思想方法。对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2.5 假设的思想方法。假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
2.6 符号化思想方法。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。
2.7 分类的思想方法。分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
2.8 集合的思想方法。集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
2.9 数形结合思想方法。数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
2.10 推理的思想方法。推理是从一个或几个判断得到一个新的判断的思维形式。推理的种类很多,根据推理所表现出来的思维的方向性,可分为归纳推理、演绎推理、类比推理。归纳推理从个别事例中概况出一般原理的思维方法;演绎推理是从一般到特殊的推理方法;类比推理是根据两个(或两类)不同的对象之间在某些方面有相同或相似之处,猜测它们在其他方面也可能相同或相似,是由此及彼的过程。
2.11 归纳的思想方法。在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
2.12 统计的思想方法。在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法?
从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。