论文部分内容阅读
在观测空间目标时,往往会受到地基观测仪器等因素的制约,导致无法利用目标图像信息从外形上进行识别。根据不同空间目标表面组成材料不同,其产生的反射光谱会存在差异这一特性,可利用空间目标特有的光谱信息进行识别分类。基于此,从光谱学角度对空间目标识别算法进行研究,在K最近邻算法(KNN)的基础上,采用了一种自适应权重局部超平面方法(AWKH),算法主要在计算预测样本与超平面距离时加入对特征权重的考虑,构建了以样本特征组间差与组内差的比值作为特征权重值的超平面模型,从而提高了分类效果和分类效率。为验证算法的分