论文部分内容阅读
混凝土道路路面中,裂缝的出现常常会导致重大的工程和经济问题。目前,利用计算机视觉技术进行裂缝检测时,需人工预先设计特征提取器对提取的图像特征进行分类,导致泛化能力较差和分类性能较弱。文中提出了一种基于卷积神经网络的裂缝检测方法,实现路面缺陷的自动化检测分类并提高路面裂缝检测效率与精度。首先,设计混凝土路面裂缝卷积神经网络,该模型基于AlexNet网络架构,从网络结构层次和超参数两个方面进行优化设计;其次,采用相机收集混凝土路面图像以获得学习数据,根据数据集大小、图像颜色因子的不同,分别创建了10 0