论文部分内容阅读
在课本上我们用数学归纳法证明了等式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6.然而n(n+1)(2n+1)/6是怎样得来的?1^3+2^3+…+n^3又等于多少?下面通过几种不同的思路进行考虑.记S1(n)=1+2+3+…+n,S2(n)=1^2+2^2+3^2+…+n^2,S3(n)=1^3+2^3+3^3+…+n^3.