论文部分内容阅读
设L为有理数域Q的Abel扩张 ,其Galois群Gal(L)为q 群 ,q为任意素数 .给出了任一素数p在L中的明显素分解律、惯性群、剩余类次数和L的判别式等 .并将域L分为 6或 8类 (当q奇或偶 ) ,给出了数论结构 .继而研究了相对扩张L/K ,证明了在简单条件下L/K具有相对整基 ;给出了相对判别式D(L/K) ;得出了D(L/K)是由一有理数平方所生成的主理想的充分必要条件 ,以及D(L/K)为有理数生成的主理想的充分必要条件 .特别地 ,证明了 :记x 为Gal(L)的指数 ,若 [