论文部分内容阅读
目标跟踪是计算机视觉实践课程中学生选课率最高的实验项目。针对传统Mean Shift跟踪算法无法克服复杂环境下背景颜色干扰的问题,提出一种基于目标运动信息的Mean Shift跟踪算法。通过引入显著性检测MSS算法,实现对传统MOG(混合高斯模型)算法的改进,并利用改进的MOG算法,检测场景图像中的运动目标信息,对Mean Shift框架下的目标模型进行加权描述,提高目标和背景的区分度,减少背景信息对目标定位的干扰。实验结果表明,改进算法可以对视频流中的运动目标进行较准确的实时跟踪。