【摘 要】
:
电话诈骗日益猖獗, 严重影响人民的生命和财产安全, 如何有效防范电话诈骗已成为社会的一大焦点问题.本文提出一种基于Attention-BiLSTM模型的诈骗电话识别方法. 该方法以电话文本为数据集, 采用双向长短时记忆神经网络(bi-directional long short-term memory)模型提取句子的长距离特征. 通过引入注意力机制增强电话文本中与诈骗相关词汇的特征权重, 得到电话文本的句子层面的特征向量表示, 最后输入Softmax层进行分类预测.实验结果表明, 基于注意力机制的BiLS
【机 构】
:
山东建筑大学 信息与电气工程学院, 济南 250101;山东省智能建筑技术重点实验室, 济南 250101;山东建筑大学 信息与电气工程学院, 济南 250101
论文部分内容阅读
电话诈骗日益猖獗, 严重影响人民的生命和财产安全, 如何有效防范电话诈骗已成为社会的一大焦点问题.本文提出一种基于Attention-BiLSTM模型的诈骗电话识别方法. 该方法以电话文本为数据集, 采用双向长短时记忆神经网络(bi-directional long short-term memory)模型提取句子的长距离特征. 通过引入注意力机制增强电话文本中与诈骗相关词汇的特征权重, 得到电话文本的句子层面的特征向量表示, 最后输入Softmax层进行分类预测.实验结果表明, 基于注意力机制的BiLSTM诈骗电话分类模型的准确率较基线模型分别提高了2.15%和0.6%, 具有更好的预测性能.
其他文献
人工智能的逐步应用对行业的生产效率和技术变革影响显著, 传统行业因样本收集难度大、成本高、涉及个人隐私等原因, 进行深度学习时, 面临着小样本和不平衡数据问题. 现有的样本扩充方法存在着生成效果不能兼顾广泛性和合理性等问题. 为此, 提出一种基于变分自编码器潜变量语义提炼的样本扩充算法, 利用神经网络的权重作为输入特征与潜变量相关性的度量, 获取输入特征与变分自编码器潜变量的依赖关系, 为潜变量赋予语义提供重要依据, 实现显式控制潜变量的不同维度, 生成满足总体分布且在原训练集未包含的样本. 在对民用建筑
在老旧仓库中使用传统人工势场算法进行路径规划时, 原本出现频率极低的与远目标端障碍物相撞、目标点不可达、局部极小值等缺陷出现的频率极大提高. 为提升人工势场算法寻径的成功率, 本文提出了改进人工势场算法, 对上述3种缺陷进行了修正, 并使用Matlab模拟仿真验证了算法的有效性. 在改进人工势场算法中, 通过对引力与斥力的改进, 有效解决了与远目标端障碍物相撞及目标点不可达问题. 通过引入临时障碍物, 则有效解决了局部极小值问题. 在实验部分, 针对不同仿真环境, 我们以路径长度和程序运行时间作为评价指标
FSSD (fast and efficient subgroup set discovery)是一种子群发现算法, 旨在短时间内提供多样性模式集, 然而此算法为了减少运行时间, 选择域数量少的特征子集, 当特征子集与目标类不相关或者弱相关时, 模式集质量下降. 针对这个问题, 提出一种基于集成特征选择的FSSD算法, 它在预处理阶段使用基于ReliefF (Relief-F)和方差分析的集成特征选择来获得多样性和相关性强的特征子集, 再使用FSSD算法返回高质量模式集. 在UCI数据集、全国健康和营养调
本文分析了三维地理信息系统和大屏展示系统的现状及特点, 以通用性的综合展示平台为例, 选取南宁市数字孪生可视化展示为主题, 从空间信息场景设计、表达对象选取、页面布局、平台色彩设计、符号设计、图表设计、动效设计的角度切入, 提出了基于三维GIS的大屏可视化策略. 并基于上述策略, 对该类型平台搭建的系统架构和关键技术点展开阐述, 最终实现平台的研发, 以期为同类型可视化案例提供参考.
目前基于传统深度学习的关系抽取方法在复杂语境下抽取较为困难, 且未考虑语境中非目标关系对关系抽取所带来的影响. 针对这一问题, 本文提出了控制输入长短期记忆网络CI-LSTM (control input long short-term memory), 该网络在传统LSTM的基础上增加了由注意力机制和控制门阀单元组成的输入控制单元, 控制门阀单元可依据控制向量进行关键位置上的重点学习, 注意力机制对单个LSTM的输入的不同特征进行计算. 本文通过实验最终选择使用句法依存关系生成控制向量并构建关系抽取模型
视频流服务的迅猛发展, 大规模用户共享带宽链路的场景不断增多. 现存的DASH视频流采用的ABR算法多用于提高单客户端用户的体验质量(quality of experience, QoE), 还有一些算法仅针对数个客户端的情况. 本文提出一种应用于大规模客户端场景的带宽调度算法, 通过聚类算法减小调度规模, 再将带宽分配同ABR算法结合,对聚类客户端进行比特率决策, 提高带宽利用率, 保证总体QoE最大化. 我们的实验结果表明, 与均分带宽的调度方式相比, 通过对聚类客户端带宽调度并应用到所有客户端的方式
针对当前教育资源共享安全性低和身份认证困难的问题, 提出了一种区块链技术与无证书签名相结合的可跨域身份认证方案, 将无证书签名技术的高安全性、无密钥托管问题等优点应用到区块链的分布式网络中, 实现了身份认证过程中用户安全、跨域认证、恶意用户可追溯、注册信息不可篡改. 首先, 基于教育区块链与无证书签名的身份认证方案是建立在区块链架构下的身份认证模型, 设计了域内区块链和跨域区块链, 建立了跨域认证的模型. 其次, 利用无证书签名以及陷门哈希函数, 确保认证过程用户安全以及恶意用户可追溯. 通过分析, 本方
针对现有算法和模型对于网络中用户影响力计算大多只考虑拓扑结构和贪心算法而较少考虑真实社会网络中信任度对于节点影响力的重要性这一问题, 该文提出一种全局信任模型(global trust model, GTM)用于评估节点的影响力. 首先计算节点与邻居节点间的信任关系作为局部信任度, 其次利用Beta信誉模型在节点局部信任度的基础上得到全局信任度, 最后根据节点的全局信任度评估节点的影响力大小. 在真实的网络数据集上对该模型与经典影响力算法进行实验对比, 结果表明, 该文提出的方法不仅具有更低的时间复杂度,
随着互联网技术的发展以及2020年新冠疫情的爆发, 越来越多的学生选择在线教育. 然而在线课程数量庞大, 往往无法及时找到合适的课程, 个性化智能推荐系统是解决这一问题的有效方案. 本文根据用户在线学习具有明显时序性的特点, 提出一种基于改进自编码器的在线课程推荐模型. 首先, 利用长短期记忆网络改进自编码器, 使得模型可以提取数据的时序性特征; 然后, 利用Softmax函数进行课程的推荐. 实验结果表明, 所提方法与协同过滤算法和基于传统自编码器的推荐模型相比, 具有更高的推荐准确率.
针对现有的视频点播技术无法直接在智慧矿山管控平台中直接使用的问题, 基于HTTP的自适应码率流媒体传输协议与FFmpeg开源库设计一种视频点播技术. 该技术包括客户端模块、Web请求处理模块、多媒体处理模块. 该技术中客户端模块通过设定的视频源信息向Web请求处理模块发送视频请求; Web请求处理模块利用请求中的视频源信息调用多媒体处理模块获取多媒体流文件, 并将流媒体文件请求地址返回给客户端; 客户端接收到流媒体地址后, 根据流媒体地址请求视频文件并播放. 通过引入hls.js开源库, 该技术可以在任何