【摘 要】
:
聚焦乡村教师政策执行,分析其社会支持,不仅因为政策的有效性主要依赖于政策实施,还涉及对乡村教师政策执行现状的评价以及国内学界相关研究的审视。社会支持的构成分析,应基于科学性、完整性、持续性、本土性等认知立场,强调对乡村教育以及教师专业成长规律的理解与尊重,强调解决问题而不必陷入概念内涵的无谓之争,强调不同群体的利益关联以及在此基础上形成的协同关系。具体而言,乡村教师政策执行的社会支持涵盖政府支持、相关教育机构支持、乡村教师支持、舆论支持、专家支持、社会非财政投入支持等。社会支持由混沌的自发状态转化为清晰的
【基金项目】
:
国家社科基金教育学一般项目“我国乡村教师政策的社会支持与评价体系研究”(项目编号:BFA180073)。
论文部分内容阅读
聚焦乡村教师政策执行,分析其社会支持,不仅因为政策的有效性主要依赖于政策实施,还涉及对乡村教师政策执行现状的评价以及国内学界相关研究的审视。社会支持的构成分析,应基于科学性、完整性、持续性、本土性等认知立场,强调对乡村教育以及教师专业成长规律的理解与尊重,强调解决问题而不必陷入概念内涵的无谓之争,强调不同群体的利益关联以及在此基础上形成的协同关系。具体而言,乡村教师政策执行的社会支持涵盖政府支持、相关教育机构支持、乡村教师支持、舆论支持、专家支持、社会非财政投入支持等。社会支持由混沌的自发状态转化为清晰的
其他文献
四边形是“图形与几何”领域的重要内容之一,其包含平行四边形、矩形、菱形、正方形等特殊四边形。这部分内容知识点多,考查形式丰富多样,能力要求跨度大,是同学们复习的重难点之一。 一、根据特殊四边形的性质、判定解决简单问题 例1 (2020·北京)如图1,菱形ABCD的对角线AC、BD相交于点O,E是AD的中点,点F、G在AB上,EF⊥AB,OG∥EF。 (1)求证:四边形OEFG是矩形; (2
有效推进学生发展指导、促进学生全面而有个性的发展是新高考改革背景下普通高中所面临的一项重要任务。但在具体实践中,有些学校对学生发展指导理解浅表化,将“发展”指导等同于“选考”指导;具体实施过程碎片化,缺乏系统思考;对学生发展指导所需资源支持不足,思路过于封闭。为此,普通高中要厘清学生发展指导分别与学生发展、高考改革和学校发展之间的关系,进一步明确其价值定位;立足本校学生的发展需求,对学生发展指导工作进行整体规划、持续推进、动态调整;搭建多种平台,加强对教师的宣传培训,促进相互交流,提高教师的"指
【摘要】对早期中国共产党人新闻基本理论探索进行研究,有其学术意义和理论价值。考察其相关背景,须把握如下要点:中国共产党成立前,内忧外患及思想激荡凸显;“十月革命一声炮响,给我们送来了马克思列宁主义”;涌现了在建党过程中发挥重要作用的中坚力量;早期中国共产党人多有办革命报刊和从事新闻活动的经验。探索的内容包括:党从诞生之时起就有的认识(党的报刊要由党掌握),新闻的定义(“新闻是现在新的、活的社会状况
试题源于教材又高于教材,翻阅历年中考题,我们不难看到教材例题的身影。为此,在中考复习时回归教材,关注典型例题的深层次挖掘,一方面符合思维能力较弱的同学的接受实际,另一方面也为思维能力较强的同学拓展思维深度。因此,深究教材例题,是考前复习较为有效的手段之一。 例题 (苏科版数学教材八年级下册第68页例2)已知:如图1,在?ABCD中,点E、F分别在AD、BC上,且AE=CF。 求证:四边形BED
名师简介:江跃,江苏省常州市骨干教师,曾获常州市初中语文优质课评比一等奖、常州市初中语文教师基本功竞赛一等奖,现任教于常州市朝阳中学。 真题回放 社区,是指特定的区域里,生活上相互关联的人构成的一个大集体,小区、村庄、养老院……是社区的常见形态。每个人都有自己的社区,每个社区都流淌着丰富多彩的生活画面,都有很多难忘的时刻值得我们用文字把它铭刻并与他人分享。 请以“社区的傍晚”为题,写一篇文章
圆是涵盖知识点较多的图形,可以从线段、角、多边形等直线图形扩充到弧、扇形等曲线图形。如果将圆与各类直线图形结合,我们能构造出更复杂的图形。如何有效解决圆中的易错问题,避免失误呢?我们可以从以下几个方面来辨析错误,精准解题。 一、善用圆中弧、角、弦对应关系解决圆中线角关系 例1 如图1,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )。 A.60° B.5
《普通高中数学课程标准(2017年版)》作为高考的重要依据,提出了数学学科核心素养,而数学学科核心素养高考测评与课程标准的一致性问题亟待解决。通过文献法、访谈法、专家咨询法、内容分析法,构建了“层面架构×认知水平×主题内容”的一致性分析框架。其中,层面架构包含数学知识、问题解决与数学思维三个方面,认知水平遵循《普通高中数学课程标准(2017年版)》中数学学科核心素养的三个水平,主题内容涵盖高中数学课程中必修课程与选择性必修课程的基本内容点。
不少同学在解有关“圆”的综合题时往往思路不清,不是找不到方法,就是方法烦琐。而解决的关键还是在于对基本性质、基本定理、基本图形的熟练掌握,一些难度较大的问题,往往还需要构造辅助线来牵线搭桥。下面我们就以2020年浙江省杭州市的中考题为例,分析一下如何抓住基本图形找到解题的突破口。 例 如图1,已知AC、BD为⊙O的兩条直径,连接AB、BC,OE⊥AB于点E,点F是半径OC的中点,连接EF。 (
数学在中考中的重要性不言而喻。数学老师在中考前总是反复强调要规范解答,避免无谓失分。那么,什么叫规范解答呢?规范解答是指在解决“解答类”问题时,根据试题提供的信息(文字、符号、图形等)以及要解决的问题,依据数学本身的规范要求,把求解的过程及结论清晰、准确、简洁、完整地书写在规定的答题区域内。作为考生,我们在解答时应力求详略得当,言必有据,逻辑清晰,结论明确。下面,我们以两道圆的中考题为例,谈谈如何
近几年,命题者常以四边形为背景,渗透点的运动,并对此点在运动变化过程中产生的等量、变量、图形间的关系进行考查.下面结合例题对四边形中的动点问题进行剖析,供同学们参考.