论文部分内容阅读
研究大规模交易数据库的聚类问题,提出了一种二次聚类算法——CATD.该算法首先将数据库划分成若干分区,在每个分区内利用层次聚类算法进行局部聚类,把交易初步划分成若干亚聚类,亚聚类的个数由聚类间的距离参数控制.然后对所有的亚聚类进行全局聚类,同时识别出噪声.由于采用了分区方法和聚类的支持向量表示法,该算法只需扫描一次数据库,聚类过程在内存中进行,因此能处理大规模的数据库.