论文部分内容阅读
研究使用基于一阶Markov模型产生相关的瑞利衰落包络。首先介绍产生相关高斯和复高斯随机变量的一阶Markov模型。对相关复高斯随机变量进行取模运算后得到相关瑞利随机变量,并得到自相关矩阵为实矩阵的加色矩阵。给出使用一阶Markov模型生成相关瑞利随机变量的相关系数的解析表达式,它由一个超几何函数表示。使用数值算法以曲线和表格形式给出相关的瑞利随机变量相关系数与一阶Markov模型参数之间的数值关系,使用仿真方法分别得到了相关的瑞利随机变量和相关的瑞利衰落包络。
The study used a first-order Markov model based on the resulting Rayleigh fading envelope. First, we introduce the first-order Markov model that produces related Gaussian and complex Gaussian random variables. The relevant Rayleigh random variables are obtained after the modulo operation of the related complex Gaussian random variables and the additive color matrix of the autocorrelation matrix is obtained. An analytical expression of the correlation coefficient of the related Rayleigh random variables using the first-order Markov model is given, which is represented by a hypergeometric function. Using the numerical algorithm, the numerical relationship between the correlation coefficients of the Rayleigh random variables and the parameters of the first-order Markov model is given in the form of curves and tables. The related Rayleigh-like variables and the related Rayleigh fading envelopes .