论文部分内容阅读
利用黄籽沙逊油菜L143和大白菜Z16杂交,再用Z16回交2代,然后进行小孢子培养构建了包含120个BC2DH株系的分离群体。应用135个InDel标记构建了包含10连锁群覆盖全基因组总长度为559.08 cM的遗传图谱。利用HPLC法对不同年份中亲本及BC2DH群体株系叶片中不同结构硫苷的测定,发现亲本间3–丁烯基硫苷积累差异极显著,结合MapQTL4软件与MQM作图法分析,共发现了两个控制3–丁烯基硫苷积累的主效QTL位点NAP-QTL-A03和NAP-QTL-A09,其中NAP-QTL-A03能解释51.0%(2007年秋)和64.2%(2009年春)的变异,两个QTL累计贡献率分别为67.90%(2007年秋)和73.10%(2009年春)。结合白菜基因组进一步分析认为NAP-QTL-A03为控制烯烃基硫苷生物合成的关键位点AOP,且可能的候选基因为BrAOP2,而NAP-QTL-A09位点附近存在另一个调控硫苷生物合成候选转录因子MYB28。
The isolate of 120 BC2DH lines was constructed by crossbreeding the yellow rasherson L143 with Chinese cabbage Z16 and backcrossing the second generation with Z16, then carrying on the microspore culture. 135 InDel markers were used to construct a genetic map that contains 10 linkage groups covering the entire genome of 559.08 cM. The HPLC method was applied to the determination of different structural glucosinolates in the leaves of parents and BC2DH population in different years. The results showed that there was a significant difference in the accumulation of 3-butenyl glucosinolate among parents. Combining with MapQTL4 software and MQM mapping analysis, Two NAP-QTL-A03 and NAP-QTL-A09 were the major QTLs controlling 3-butenyl glucosinolate accumulation, of which NAP-QTL-A03 explained 51.0% (autumn 2007) and 64.2% (spring 2009) The cumulative contribution rates of the two QTLs were 67.90% (Autumn 2007) and 73.10% (Spring 2009) respectively. Further analysis of the genome of Chinese cabbage suggested that NAP-QTL-A03 is the key site controlling the biosynthesis of allykylthioglycosides and the possible candidate gene is BrAOP2, while another NAP-QTL-A09 biosynthesis control Candidate transcription factor MYB28.