论文部分内容阅读
提出了一种基于免疫克隆选择算法的特征选择方法.特征选择可以被看成是一个组合优化问题,利用免疫克隆选择算法快速收敛于全局最优的特性,加快搜索到最优特征子集的速度,为后续模式分类提供良好的判别依据.实验结果表明算法在保持甚至提高分类精度的同时,有效地降低了特征维数.与基于遗传算法特征选择的结果相比较,在有限代数内,该算法能收敛到更优的特征子集,从而验证了算法的有效性及其应用潜力.