论文部分内容阅读
针对采用分形维数作为特征描述掌纹信息不准确的问题,对差分盒子维进行改进提高特征区分性。此外,由于采用单一的特征不足以描述掌纹纹理,引入Gabor变换,提出一种基于Gabor变换与改进差分盒子维(GIDBC,Gabor improved differential box counting)相结合的掌纹识别算法。通过在PolyU掌纹图像库上实验,与传统高性能算法比较,本算法识别率最高可达到99.78%,表明了本文方法的有效性,同时特征提取与匹配时间为338 ms,满足实时性要求。