论文部分内容阅读
支持向量机(SVM)花费大量时间用于对非支持向量样本的优化.根据支持向量都是位于两类边界的靠近分类超平面的样本点,本文提出首先利用基于中心距离比值法排除大部分远离分类超平面的样本,然后以最小类间距离样本数作为测度进一步选择边界样本,得到包含所有支持向量的最小样本集,构成新的训练样本集训练SVM.将提出的算法应用于解决医学图像奇异点检测问题.实验结果表明,该算法减小了训练样本集的规模,有效地缩短了SVM训练算法的时间,同时获得了较高的检出率.