论文部分内容阅读
为探讨利用可见/近红外光谱进行小麦黑胚病快速无损检测的可行性,以及基于主流机器学习算法,寻找面向生产的小麦黑胚病优化识别模型,利用自行研发的近红外光谱采集平台采集了579~1 099 nm波段23个品种共2760个小麦单籽粒的吸光度光谱数据,采用标准正态变量变换(SNV)进行预处理之后分别经过SPA(successive projections algorithm),P CA(principal component analysis)等两种数据降维方法,结合ELM(extreme learning m a