你也可以发现数学定理

来源 :数学大王·高年级 | 被引量 : 0次 | 上传用户:xpzcz1987
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  相信很多小读者都会有这种印象:数学是一门深奥的科学,除了在学校必学和日常生活中偶尔用用加减乘除外,就很少用到它。
  对于喜欢数学的小读者,他们在读到一些数学家的传记或关于他们的发现时,往往会产生这样的想法:这些人真聪明,如果不是天才怎么会发现这些难得的定理或理论呢?
  这些印象和想法并不全部正确。今天我想告诉小读者们的就是,如果有天才,那你也是一个天才。只要你有了一些基础知识,懂得一些研究的方法,也可以作出一点研究,也会有新发现,数学并不是只有数学家才能研究的。
  
  有生活的地方就有数学
  
  人类靠着勤劳的双手创造了财富,数学也和其他科学一样产生于实践。可以说有生活的地方就有数学。
  你看木匠要做一个椭圆的桌面,拿了两根钉子钉在木板上,然后用一条打结的绳子和粉笔,就可以在木板上画出一个漂亮的椭圆出来。
  如果你是整天要拿着刀和铲在厨房里工作的厨子,似乎数学是和你无缘。可是你有没有想过就在你工作时也会出现数学问题?奇怪吗?事实上并不奇怪。比方说,你现在准备烧“麻婆豆腐”,你把一大块豆腐放在砧板上,那么在最初一刀,你能切出二块,第二刀你可以切出四块,第三刀你最多可以切出多少块呢?你切了第五刀最多能切出多少块呢?这不就是数学问题吗?你会惊奇地发现有一个公式可以算出切第n刀时可以得到豆腐的最多块数。
  我们每天或多或少都会和钱打交道。你可能也会注意到这样的现象:任何一笔多于6元的整数款项都可以用2元纸币及5元纸币来支付。比如7元可以用一张2元和一张5元的纸币来支付,8元可以用四张2元纸币,9元可以用二张2元纸币和一张5元纸币去支付……
  有些小读者会说:这不是很容易吗?如果钱数是偶数的话,我只要用若干张2元去支付就行了,如果是奇数的话,我只要先付一张5元钞票,剩下的是偶数款项,当然就可以用2元纸币去处理。
  如果你能这样说,那很好,这说明你已经能熟练运用整数的性质了。
  从这些例子中你可以看到数学在日常生活中是有用的。如果你细心的话,你就会发现在你学习、生活的地方会有很多数学问题产生。
  
  发现定理的秘诀
  
  科学家是怎样发现定理的呢?他们是否有一个秘诀?如果能知道那该多好啊!
  是的,这里确实有秘诀。下面的一个真实故事就会告诉你秘诀在哪里。
  在湖南省的一个农村生产队,1964年以前禾苗年年受到虫害,粮食产量总是不高,亩产最多500多斤。那里最厉害的是一种叫蚁螟的虫,它们能使水稻枯心,农民直到看到禾苗出现“白线子”才喷药。可是农药喷了,虫却没治好。有一个农民看到这种情形,他决定想法子根治这种虫害,可是很多人却认为他文化水平低,不可能取得什么成果。他不理会那些意见。当第一代的螟蛾生出后,他就守在田边察看,看蛾子如何产卵,发现卵块的地方就作标记,记下产卵日期,看卵什么时候孵化。不管刮风下雨,他日夜不离田边,终于揭开了秘密。掌握了这种虫的生长规律,他就找到了法子消灭它。他用这种“笨”办法,以后也控制了其他虫害,使粮食亩产达到了1200多斤。
  许多人承认,在一些科学领域上的发现和发明:如物理上的自由落体定律,化学上的合成胰岛素、链霉素,生物上的遗传规律,医学上的用针灸医治聋哑病患者……都是需要依靠实验和观察的。如果我告诉大家,数学上的发现也是靠观察得来的,同学们千万不要觉得奇怪哦!
  数学其实就是研究数、形、集合、关系及运算的性质和变化的规律。那么人们是怎样发现这些性质和规律的呢?
  是不是真的像一些宣传宗教的小册子上写的,连那大名鼎鼎的17世纪的英国科学家牛顿,也是因为他的虔诚,为上帝所宠爱,让一个苹果掉在他的头上,启发他发现物理上的“万有引力定律”?人类的活动真是上帝在操纵吗?
  让我们看一看18世纪的一个大数学家欧拉的一些意见吧!
  欧拉是瑞士人,一生大部分时间是在俄国和德国的科学院度过,对这两个国家特别是俄国的数学发展作出了巨大的贡献。他是最多产的数学家,在有生之年就已经出版和发表500多本书和文章,死后还留下200多篇文章未发表,以及一大堆不太完整的手稿。他的工作涉及的范围很广,单是数学就包含了当时的数学差不多所有的分支,在物理、天文、水利等等一些较为实用的科学上他也作出过贡献。为什么欧拉能有这样多的发现呢?在他那篇《纯数学的观察问题》的文章里,他就告诉了人们一个秘诀:“这是依靠观察得来的。”事实上欧拉就是一个善于观察的数学家。
  同学们,你们善于观察周围的事物吗?试着像欧拉一样多观察周围吧,说不定你也可以发现数学定理!
其他文献
期刊
读了教育家朱永新老师徒进最理想的教育》文集,为其新颖的论述所吸引。朱老师所倡导的新教育实验行动具有鲜明的特色,六大行动已经深人人心。即“营造书香校园,师生共写随笔,聆听
研究了一类具有比率和单调功能反应的中立型捕食系统.通过利用重合度理论获得了其正周期解存在性的充分条件,推广和改进了已有文献的相关结果.
一、长期股权投资的初始计量的财税处理差异(一)企业合并形成的长期股权投资初始投资成本与计税基础差异1.同一控制下的企业合并形成的长期股权投资初始投资成本与计税基础差
本文研究的是华罗庚域的特殊类型第二类Cartan-Hartogs域的不变Bergman度量与Kahler-Einstein度量的等价问题.引入一种与Bergman度量等价的新的完备的Kahler度量ωgλ,其Ricc
平面设计作为一种重要的信息传递方式,近些年来有了很大程度的进步,在产品开发、广告等各个领域广泛运用。随着平面设计的迅猛发展,在满足基本信息传递功能的前提下,如何更好
天边的彩虹,折射出七色光芒的美;温柔的阳光,照射出五彩斑谰的梦;幸福的时光,牵出我那流年的记忆美.rn同学谊rn“哎!”这一次的数学又挂红灯了!看着同学们喜笑颜开的模样,我
根据市场研究公司Gartner提供的最新数据,2011年度,甲骨文在关系数据库管理系统的市场份额高达48.8%,而在其后的IBM、微软和SAP的市场份额分别为20.2%、17%和46%.该数据再次提醒
我早已经结束了小学生活,但我仍然经常回忆我的小学生活,思念我的好朋友.其中,我最思念的是我的野蛮好友马寒冰.rn马寒冰和我一样大,她是班长,六年级时跟我是同桌,是个回族女
“数学是思维的体操,是智力的磨刀石。”数学能力的核心是数学思维能力,创造性思维又是数学思维的品质。创造性思维是具有开拓、创新意识的开创型人才所必须具有的思维品质。因