高速列车精确停车的鲁棒自触发预测控制

来源 :自动化学报 | 被引量 : 0次 | 上传用户:hulaxiazai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
列车精确停车作为列车自动运行(Automatic train operation,ATO)系统的一项核心功能,对高速列车的安全和高效运行至关重要.本文针对高速列车停车过程的特点,考虑在避免控制输出频繁切换的前提下实现高精度的停车曲线跟踪,提出了基于模型预测控制(Model predictive control,MPC)的精确停车算法.针对列车停车过程中外部不确定性阻力干扰,采用鲁棒模型预测控制方法,提高对外部干扰的鲁棒性.引入自触发控制策略,以进一步减少控制输出的频繁切换,提高停车过程的舒适度.该方法不需要每个采样时间都求解线性约束二次规划问题,降低了对系统采样和通信能力的要求,提高了算法的实用性.分析结果表明,高速列车精确停车控制方法的稳定性和性能指标的次优性可以得到保证.基于高速列车实际运行数据的仿真结果验证了算法的有效性.
其他文献
虽然深度神经网络(Deep neural networks,DNNs)在许多任务上取得了显著的效果,但是由于其可解释性(In-terpretability)较差,通常被当做“黑盒”模型.本文针对图像分类任务,利用对抗样本(Adversarial examples)从模型失败的角度检验深度神经网络内部的特征表示.通过分析,发现深度神经网络学习到的特征表示与人类所理解的语义概念之间存在着不一致性.这使得理解和解释深度神经网络内部的特征变得十分困难.为了实现可解释的深度神经网络,使其中的神经元具有更加明确的语义
深度强化学习是人工智能领域新兴技术之一,它将深度学习强大的特征提取能力与强化学习的决策能力相结合,实现从感知输入到决策输出的端到端框架,具有较强的学习能力且应用广泛.然而,已有研究表明深度强化学习存在安全漏洞,容易受到对抗样本攻击.为提高深度强化学习的鲁棒性、实现系统的安全应用,本文针对已有的研究工作,较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析,并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势,旨在为从事相关安全研究与工程应用提供基础.