论文部分内容阅读
利用机器学习方法解决存储领域中若干技术难题是目前存储领域的研究热点之一。强化学习作为一种以环境反馈作为输入、自适应环境的特殊的机器学习方法,能通过观测环境状态的变化,评估控制决策对系统性能的影响来选择最优的控制策略,基于强化学习的智能RAID控制技术具有重要的研究价值。本文针对高性能计算应用特点,将机器学习领域中的强化学习技术引入RAID控制器中,提出了基于强化学习的智能I/O调度算法RLscheduler,利用Q学习策略实现了面向并行应用的自治调度策略。RLscheduler综合考虑了调度的公平性