论文部分内容阅读
一九九五年全国统一高考数学(理工类)第25题是:设{a_n}是正数组成的等比数列,S_n是其前n项的和。 (1)证明:1/2(lgS_n+lgS_(n+2))0,使1/2[lg(S_n-C)+lg(S_(n+2)-C)]=lg(s_n-C)(n∈N)成立?并证明你的结论。
In 1995, the 25th problem in the national unified college entrance examination mathematics (science and engineering) was: Let {a_n} be an equal number of equal numbers, and S_n be the sum of its first n terms. (1) Proof: 1/2 (lgS_n+lgS_(n+2))0 so that 1/2[lg(S_n-C)+lg( S_(n+2)-C)]=lg(s_n-C)(n∈N) holds and proves your conclusion.