论文部分内容阅读
将描述拟稳定流径向水动力弥散过程的近似解析解进行反函数变换。以变换后的表达式为基础 ,建立了具有 c- t数据和 c- r数据两种情况下的直线方程。该方程的因变量与自变量均为试验数据的函数 ,直线常数中含有待求弥散参数。经过适当的数据转化 ,就可以利用线性回归法或直接图解法求出直线常数 ,从而计算出含水层介质的纵向弥散度 al 和有效孔隙率 n。算例表明 ,这种方法的计算结果精度令人满意
The approximate analytic solution of the quasi-steady flow radial hydrodynamic dispersion process is transformed inversely. Based on the transformed expression, a linear equation with both ct data and cr data is established. The dependent variable and independent variable of the equation are all functions of the experimental data, and the linear constant contains the dispersion parameter to be determined. After appropriate data transformation, linear regression method or direct graphic method can be used to calculate the linear constant, so as to calculate the longitudinal dispersion a and effective porosity n of the aquifer medium. The examples show that the accuracy of this method is satisfactory