论文部分内容阅读
Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary at-tempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.
Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary at-tempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at the active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.