论文部分内容阅读
为了提高应用近红外光谱分析技术快速测定梨硬度的精度和稳定性,该研究采用联合区间偏最小二乘和遗传算法(siPLS-GA)在校正模型中用来筛选特征光谱区域和波长,通过交互验证法确定模型的主成分因子数和筛选的波长,并以预测均方根误差(RMSEP)和相关系数(Rp)作为模型的评价标准。基于siPLS-GA的最优模型包含4个光谱区、96个变量和10个主成分因子。该模型结果显示:最佳预测模型相关系数(Rp)和RMSEP分别为0.9083和0.5573。研究结果表明,近红外光谱技术结合siPLS-GA建模用于无损、快速