论文部分内容阅读
针对快速水平集算法用于图像分割时存在着阈值设置的困难,提出了一种新的改进思路.将曲线演化的过程看成对曲线上的点不断进行模式分类的过程,对控制曲线演化的外部速度函数进行重新设计.新算法通过引入贝叶斯分类决策和最小距离分类决策交替工作,间接从图像数据中获取外部速度函数所需的驱动力,使驱动力不再产生于划分图像数据所采用的阈值,同时将两种分类决策的失效条件作为新算法迭代停止的条件.仿真实验结果表明,新的分割算法不仅拥有较强的鲁棒性,能够自适应地根据图像灰度信息自动演化,而且对噪声影响也具有较强的抑制性.同时