论文部分内容阅读
为了提高复杂背景下视频对象跟踪的有效性和鲁棒性,提出了一种基于隐马尔科夫(HMM F)模型与特征-空间联合分布的视频序列对象跟踪算法,其特点是将视频序列的对象跟踪问题描述为将当前帧分割为跟踪区域和非跟踪区域的动态图像分割问题.基于HMM F模型,将最优标记场估计问题转化为连续函数最优化问题.同时,将跟踪区域和背景区域的特征-空间联合概率分布作为贝叶斯估计中的条件分布,并且引入了改进的快速高斯变换来高效地估算分布函数.实验表明,这些技术使得跟踪算法对区域的局部形变和遮挡具有很高的鲁棒性,且具有较高的效率.