论文部分内容阅读
摘要:应用区间熵的理论建立项目融资决策模型,通过计算方案区间熵值对各方案进行优劣决策。其优点在于能够更加科学地表达指标信息,并把多指标评价各项目融资方式固有信息的客观作用与决策者经验判断的主观能力量化并结合为一个复合权重集。算例表明其具有有效性及科学性。
关键词:熵;区间熵;项目融资;决策模型
中图分类号:F830.9文献标识码:A文章编号:1672-3198(2007)10-0069-02
1引言
项目的融资方式主要有向银行贷款、发行企业债券、发行股票、发行可转换债券、保留盈余等方式。如何从众多的融资方式中选出最优方案是项目融资决策者面临的现实问题。
2区间数和模糊数的定义
首先给出区间数和模糊数的定义和基础理论。
区间数定义:记=[aL,aU]={x|aL≤x≤aU,aL,aU∈R},称为一个区间模糊数定义:模糊数能够较好的表达多种语言变量,且简单易于理解。一个模糊数可由3个确定数来定义,即=(a1,a2,a3),隶属函数为:
3模型的构造
3.1构造决策矩阵
下面根据有关熵的性质建模,其过程如下:
(1)拟定独立的备选项目融资方案i(i=1,2,…,n)。
(2)建立评价指标集J(j∈J,j=1,2,…,m)包括定性指标、定量指标和约束性指标,其中含有精确值、区间值和模糊值3种类型。并且设j∈(1,c)时为精确值指标;j∈(c+1,d)时为区间值指标;
3.2确定指标权重
为了把多指标评价各项目融资方式的客观信息与决策者的主观判断结合起来,本文利用层次分析法来确定各评价指标的权重W={w1,w2,…,wm}。
AHP的基本原理是用目标层、准则层、措施层等自上而下地将各类因素之间的直接影响关系排列于不同层次,并构成层次结构图。用两两比较的方法确定判断矩阵,然后把判断矩阵的最大特征根相对应的特征向量作为相应的系数,算出各指标的权重。
主要步骤为:
(1)分析系统中各因素之间的关系,建立系统的递阶层次结构,主要包括目标层、准则层、措施层等。
(2)对同一层次的各因素关于上一层次中某一准则的重要性进行两两比较构造判断矩阵。采用专家调查法,得到按1~9比例标度表示的判断矩阵。
(4)计算各层元素对系统目标的合成权重,并进行总排序和一致性检验,最终得到各评价指标的权重W={w1,w2,…,wm}。
3.3规范决策矩阵
常见的指标类型有效益性和损失性,效益性指标值越大越好,损失性指标值则越小越好。要消除不同物理量纲对决策结果的影响,需要把混合决策矩阵A转化成规范化矩阵B=(bij)n×m。本文将所有指标分为两大类进行规范化,J1表示收益性指标集,J2表示损失性指标集。
3.4熵值的计算
为了进行项目融资方式的决策,引用熵的概念来表现各项目融资方式的不确定性程度,然后对方案区间熵值进行排序,熵值越小方案越优。
由此得到各融资方案的区间熵值,熵值越小,方案越优。通过这一方法对各融资方式进行多目标综合评价,为项目融资方提供科学可靠的决策依据。
参考文献
[1]单薇,张瑞,王瑗.基于熵的科技投融资的绩效评价[J].运筹与管理,2003,12(5):77-80.
[2]冀伟,田元福,王立.大型项目融资风险度量[J].兰州交通大学学报,2006,25(6):67-69.
[3]邱菀华.管理决策与应用熵学[M].北京:北京机械工业出版社,2002.
[4]李洪兴.模糊数学[M].北京:国防工业出版社,1994.
[5]胡运权.运筹学教程[M].北京:清华大学出版社,2003.
[6]许树柏.层次分析法原理[M].天津:天津大学出版社,1998.
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”
关键词:熵;区间熵;项目融资;决策模型
中图分类号:F830.9文献标识码:A文章编号:1672-3198(2007)10-0069-02
1引言
项目的融资方式主要有向银行贷款、发行企业债券、发行股票、发行可转换债券、保留盈余等方式。如何从众多的融资方式中选出最优方案是项目融资决策者面临的现实问题。
2区间数和模糊数的定义
首先给出区间数和模糊数的定义和基础理论。
区间数定义:记=[aL,aU]={x|aL≤x≤aU,aL,aU∈R},称为一个区间模糊数定义:模糊数能够较好的表达多种语言变量,且简单易于理解。一个模糊数可由3个确定数来定义,即=(a1,a2,a3),隶属函数为:
3模型的构造
3.1构造决策矩阵
下面根据有关熵的性质建模,其过程如下:
(1)拟定独立的备选项目融资方案i(i=1,2,…,n)。
(2)建立评价指标集J(j∈J,j=1,2,…,m)包括定性指标、定量指标和约束性指标,其中含有精确值、区间值和模糊值3种类型。并且设j∈(1,c)时为精确值指标;j∈(c+1,d)时为区间值指标;
3.2确定指标权重
为了把多指标评价各项目融资方式的客观信息与决策者的主观判断结合起来,本文利用层次分析法来确定各评价指标的权重W={w1,w2,…,wm}。
AHP的基本原理是用目标层、准则层、措施层等自上而下地将各类因素之间的直接影响关系排列于不同层次,并构成层次结构图。用两两比较的方法确定判断矩阵,然后把判断矩阵的最大特征根相对应的特征向量作为相应的系数,算出各指标的权重。
主要步骤为:
(1)分析系统中各因素之间的关系,建立系统的递阶层次结构,主要包括目标层、准则层、措施层等。
(2)对同一层次的各因素关于上一层次中某一准则的重要性进行两两比较构造判断矩阵。采用专家调查法,得到按1~9比例标度表示的判断矩阵。
(4)计算各层元素对系统目标的合成权重,并进行总排序和一致性检验,最终得到各评价指标的权重W={w1,w2,…,wm}。
3.3规范决策矩阵
常见的指标类型有效益性和损失性,效益性指标值越大越好,损失性指标值则越小越好。要消除不同物理量纲对决策结果的影响,需要把混合决策矩阵A转化成规范化矩阵B=(bij)n×m。本文将所有指标分为两大类进行规范化,J1表示收益性指标集,J2表示损失性指标集。
3.4熵值的计算
为了进行项目融资方式的决策,引用熵的概念来表现各项目融资方式的不确定性程度,然后对方案区间熵值进行排序,熵值越小方案越优。
由此得到各融资方案的区间熵值,熵值越小,方案越优。通过这一方法对各融资方式进行多目标综合评价,为项目融资方提供科学可靠的决策依据。
参考文献
[1]单薇,张瑞,王瑗.基于熵的科技投融资的绩效评价[J].运筹与管理,2003,12(5):77-80.
[2]冀伟,田元福,王立.大型项目融资风险度量[J].兰州交通大学学报,2006,25(6):67-69.
[3]邱菀华.管理决策与应用熵学[M].北京:北京机械工业出版社,2002.
[4]李洪兴.模糊数学[M].北京:国防工业出版社,1994.
[5]胡运权.运筹学教程[M].北京:清华大学出版社,2003.
[6]许树柏.层次分析法原理[M].天津:天津大学出版社,1998.
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”