论文部分内容阅读
为了提高语音端点检测正确率,提出一种基于多特征和神经网络相结合的语音端点检测算法。首先分别提取语音信号的短时能量特征、时域方差特征和频域方差特征,然后将这些特征量作为神经网络输入进行训练和建模,最后判断出该信号的类别。仿真实验表明,相对于单一特征语音端点检测算法,多特征融合和神经网络检测算法提高了语音端点检测正确率,具有更好的适应性和鲁棒性,对不同信噪比的信号都有较好的检测能力。